Peroxisome-Generated Hydrogen Peroxide as Important Mediator of Lipotoxicity in Insulin-Producing Cells
نویسندگان
چکیده
OBJECTIVE Type 2 diabetes is a complex disease that is accompanied by elevated levels of nonesterified fatty acids (NEFAs), which contribute to β-cell dysfunction and β-cell loss, referred to as lipotoxicity. Experimental evidence suggests that oxidative stress is involved in lipotoxicity. In this study, we analyzed the molecular mechanisms of reactive oxygen species-mediated lipotoxicity in insulin-producing RINm5F cells and INS-1E cells as well as in primary rat islet cells. RESEARCH DESIGN AND METHODS The toxicity of saturated NEFAs with different chain lengths upon insulin-producing cells was determined by MTT and propidium iodide (PI) viability assays. Catalase or superoxide dismutase overexpressing cells were used to analyze the nature and the cellular compartment of reactive oxygen species formation. With the new H₂O₂-sensitive fluorescent protein HyPer H₂O₂ formation induced by exposure to palmitic acid was determined. RESULTS Only long-chain (>C14) saturated NEFAs were toxic to insulin-producing cells. Overexpression of catalase in the peroxisomes and in the cytosol, but not in the mitochondria, significantly reduced H₂O₂ formation and protected the cells against palmitic acid-induced toxicity. With the HyPer protein, H₂O₂ generation was directly detectable in the peroxisomes of RINm5F and INS-1E insulin-producing cells as well as in primary rat islet cells. CONCLUSIONS The results demonstrate that H₂O₂ formation in the peroxisomes rather than in the mitochondria are responsible for NEFA-induced toxicity. Therefore, we propose a new concept of fatty acid-induced β-cell lipotoxicity mediated via reactive oxygen species formation through peroxisomal β- oxidation.
منابع مشابه
Antagonism Between Saturated and Unsaturated Fatty Acids in ROS Mediated Lipotoxicity in Rat Insulin-Producing Cells.
BACKGROUND/AIMS Elevated levels of non-esterified fatty acids (NEFAs) are under suspicion to mediate β-cell dysfunction and β-cell loss in type 2 diabetes, a phenomenon known as lipotoxicity. Whereas saturated fatty acids show a strong cytotoxic effect upon insulin-producing cells, unsaturated fatty acids are not toxic and can even prevent toxicity. Experimental evidence suggests that oxidative...
متن کاملRole of metabolically generated reactive oxygen species for lipotoxicity in pancreatic β-cells.
Chronically elevated concentrations of non-esterified fatty acids (NEFAs) in type 2 diabetes may be involved in β-cell dysfunction and apoptosis. It has been shown that long-chain saturated NEFAs exhibit a strong cytotoxic effect upon insulin-producing cells, while short-chain as well as unsaturated NEFAs are well tolerated. Moreover, long-chain unsaturated NEFAs counteract the toxicity of palm...
متن کاملPancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase.
Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed...
متن کاملEffects of mulberry ethanol extracts on hydrogen peroxide-induced oxidative stress in pancreatic β-cells.
Reactive oxygen species (ROS) are key mediators of mammalian cellular damage and are associated with diseases such as aging, arteriosclerosis, inflammation, rheumatoid arthritis and diabetes. Type 1 diabetes develops upon the destruction of pancreatic β-cells, which is partly due to ROS activity. In this study, we investigated the cytoprotective and anti-oxidative effects of fractionated mulber...
متن کاملEffects of Some Lamiaceae Species on NO Production and Cell Injury in Hydrogen Peroxide-induced Stress
Nitric oxide (NO) is a key mediator that plays an important role in pathogenesis of various chronic diseases like Alzheimer’s disease and Parkinson’s disease. Additionally, there is a great attitude for finding natural compounds, which could control and inhibit NO production in pathological conditions. Therefore, we were encouraged to investigate the effects of some Lamiaceae species on NO prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 60 شماره
صفحات -
تاریخ انتشار 2011